jtotheizzoe:

Mars, Mapped 
The USGS has just released a gorgeous new geologic map of Mars, combining data from four separate spacecraft to paint a rainbow-like spectrum of terrain and texture upon the red planet.
See those four bulges on the left side of the spherical projection? Each of those four mountains, Olympus Mons, Ascraeus Mons, Arsia Mons, and Pavonis Mons, are taller than any mountain on Earth, including Mauna Kea (which rises more than six miles from the ocean floor).
Learn more at Wired’s MapLab blog, and view the incredible high-res annotated version at the USGS website. 
Zoom Info
jtotheizzoe:

Mars, Mapped 
The USGS has just released a gorgeous new geologic map of Mars, combining data from four separate spacecraft to paint a rainbow-like spectrum of terrain and texture upon the red planet.
See those four bulges on the left side of the spherical projection? Each of those four mountains, Olympus Mons, Ascraeus Mons, Arsia Mons, and Pavonis Mons, are taller than any mountain on Earth, including Mauna Kea (which rises more than six miles from the ocean floor).
Learn more at Wired’s MapLab blog, and view the incredible high-res annotated version at the USGS website. 
Zoom Info

jtotheizzoe:

Mars, Mapped 

The USGS has just released a gorgeous new geologic map of Mars, combining data from four separate spacecraft to paint a rainbow-like spectrum of terrain and texture upon the red planet.

See those four bulges on the left side of the spherical projection? Each of those four mountains, Olympus Mons, Ascraeus Mons, Arsia Mons, and Pavonis Mons, are taller than any mountain on Earth, including Mauna Kea (which rises more than six miles from the ocean floor).

Learn more at Wired’s MapLab blog, and view the incredible high-res annotated version at the USGS website

I told my kids to come up with spy aliases. 
He called himself agent super kitten. #kids

I told my kids to come up with spy aliases.
He called himself agent super kitten. #kids

jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info
jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info
jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info
jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info
jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info
jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info
jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info
jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.
Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.
Zoom Info

jtotheizzoe:

skunkbear:

A couple months ago I shared some GIFs of invisible things, and I finally got around to putting them together in this video:

When light travels through areas of different air density, it bends. You’ve probably noticed the way distant pavement seems to shimmer on a hot day, or the way stars appear to twinkle. You’re seeing light that has been distorted as it passes through varying air densities, which are in turn created by varying temperatures and pressures.

Schlieren Flow Visualization can be used to visually capture these changes in density: the rising heat from a candle, the turbulence around an airplane wing, the plume of a sneeze … even sound.  Special thanks to Mike Hargather, a professor of mechanical engineering at New Mexico Tech, who kindly provided a lot of these videos.

I’m totally Schlieren right now. Amazing sights of sounds.

futurescope:

We will live again

Fascinating, retrofuturistic, tragic and eerie. Worth a look.

WE WILL LIVE AGAIN looks inside the unusual and extraordinary operations of the Cryonics Institute. The film follows Ben Best and Andy Zawacki, the caretakers of 99 deceased human bodies stored at below freezing temperatures in cryopreservation. The Institute and Cryonics Movement were founded by Robert Ettinger who, in his nineties and long retired from running the facility, still self-publishes books on cryonics, awaiting the end of his life and eagerly anticipating the next.

Follow us at:
brooklynunderground.org
facebook.com/brooklynundergroundfilms
twitter.com/bk_underground

Directed by Myles Kane & Josh Koury

Produced by Trisha Barkman